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Wave function statistics in open chaotic billiards

Piet W. Brouwer
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA

~Received 24 February 2003; published 21 October 2003!

We study the statistical properties of wave functions in a chaotic billiard that is opened up to the outside
world. Upon increasing the openings, the billiard wave functions cross over from real to complex. Each wave
function is characterized by a phase rigidity, which is itself a fluctuating quantity. We calculate the probability
distribution of the phase rigidity and discuss how phase rigidity fluctuations cause long-range correlations of
intensity and current density. We also find that phase rigidities for wave functions with different incoming wave
boundary conditions are statistically correlated.
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I. INTRODUCTION

Microwave cavities have been used as a quantitative
perimental testing ground for theories of quantum chaos@1#.
In quasi-two-dimensional cavities, the component of
electric field perpendicular to the surface of the cavity sa
fies a scalar Helmholtz equation that is formally equival
to the Schro¨dinger equation. Since the Helmholtz equation
real, the microwave electric field in the cavity is real as we
A real field serves as a model for an electronic wave funct
in the presence of time-reversal symmetry and spin-rota
invariance. Complex field patterns, which model the wa
function of an electron in a magnetic field, can be obtain
making judicious use of magneto-optical effects@2,3#. Alter-
natively, complex ‘‘wave functions’’ can be observed as tra
eling waves in open microwave cavities@4–6#. Measured
distributions of real and complex wave functions in micr
wave cavities with chaotic ray dynamics, where, traditio
ally, ‘‘complex’’ means that the time-reversal symmetry
fully broken and the phase of the wave function has no lo
range correlations, agree with a theoretical description
terms of a random superposition of plane waves@7#, as well
as with random matrix theory@8# and the supersymmetri
field theories@9#.

Recently, it has become possible to study the full cro
over from real wave functions to complex wave functio
using microwave techniques@5,6,10#. The crossover regime
is qualitatively different from the ‘‘pure’’ cases of real o
fully complex wave functions. Unlike in the pure cases, t
statistical distribution of wave functions in the crossover
gime depends on the way the statistical ensemble of wa
function elements is obtained: whether variations are ta
with respect to the coordinater , the frequencyv, or both.
Whereas the theoretical work has been roughly equally
vided between the two approaches~explicitly or implicitly!,
experiments usually need the additional average over
quency to obtain sufficient statistics@2,3,10,11# ~see, how-
ever, Refs.@5,6# for an exception!.

In general, a complex wave function may be written a

c~r !5eif@c r~r !1 ic i~r !#, ~1!

wherec r andc i are orthogonal but need not have the sa
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normalization@12#. The ratio ofc r andc i is parametrized in
terms of the normalized scalar product ofc and its time
reversed,

r5

E drc~r !2

E dr uc~r !u2

5e2if
E dr uc r~r !u22uc i~r !u2

E dr uc r~r !u21uc i~r !u2

. ~2!

The square modulusuru2 is known as the ‘‘phase rigidity’’ of
the wave functionc @13#. Real wave functions haver51,
whereasr50 if c is fully complex, i.e.,c r andc i have the
same magnitude. If the average is taken over the coordinar
only, whereas the frequencyv of the wave function is kept
fixed, the wave-function distribution follows by describin
c r and c i as random superpositions of standing wav
@4,14,15#. The resulting wave-function distribution depen
parametrically on the phase rigidityuru2. Using a microwave
billiard with a movable antenna, Barth and Sto¨ckmann have
measured such a ‘‘single-wave-function distribution’’ an
found good agreement with the theory, obtainingr from an
independent measurement@5#. It is the fact thatr is different
for each wave function that leads to the different results
averages overr only and over bothr andv, an average over
frequency involves an additional average overr. Such a full
wave-function distribution, which needs theoretical input b
yond the ansatz that each wave functionc is a random su-
perposition of plane waves, was first calculated by Somm
and Iida for the Pandey-Mehta Hamiltonian from rando
matrix theory@16# and by Fal’ko and Efetov@17,18# for a
disordered quantum dot in a uniform magnetic field.

In addition to being responsible for the difference b
tween probability distributions obtained from an avera
over position or from an average over position and f
quency, fluctuations of the phase rigidityuru2 have been
identified as the root cause for several striking phenomen
the crossover regime, such as long-range intensity corr
tions @18# and a non-Gaussian distribution of level velociti
@13#. Further, the existence of correlations between ph
rigidities of different wave functions causes long-range c
relations between wave functions at different frequenc
@19#.
©2003 The American Physical Society05-1
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Here, we consider the real-to-complex crossover for w
functions in a billiard that is opened up to the outside wor
and calculate the probability distribution of phase rigiditi
for this case. Although time-reversal symmetry is not brok
on the level of the wave equation itself, it is broken by t
fact that one looks at a scattering state with incoming flux
one waveguide only@4#. As we show here, random wav
functions in open cavities also have a fluctuating phase ri
ity, and, hence, exhibit the same variety of phenomena
those in cavities with broken time-reversal symmetry, wh
they are much easier to generate in microwave experim
@5,6#. An additional advantage of the open-billiard geome
is the absence of fit parameters: the only parameter ente
the wave-function distribution is the total numberN of
propagating modes in the waveguides between the bill
and the outside world, which can be measured independe

Single-wave-function statistics in open chaotic billiard
but without phase rigidity fluctuations, was first consider
theoretically by Pnini and Shapiro@4# and subsequently by
Ishio and co-workers@20,21#. Experimentally, wave func-
tions in open billiards were investigated by Barth and Sto¨ck-
mann@5# and by Kimet al. @6#.

In Sec. II, we describe the calculation of the pha
rigidity distribution for a chaotic billiard. In Sec. III, we the
use the phase-rigidity distribution to find wave-function d
tributions and correlations. In Sec. IV, we show that there
statistical correlations between wave functions that co
spond to different scattering states. Such correlations are
open-cavity counterpart of correlations between differ
electronic wave functions in a weak magnetic field@19#. We
conclude in Sec. V.

II. PHASE-RIGIDITY DISTRIBUTION

The key to the calculation ofP(r) in an open cavity is a
relation between the scalar products of the in-cavity parts
scattering statescm andcn and the Wigner-Smith time-dela
matrix Q @22#,

E
cavity

drcm~r !cn* ~r !5Qmn , ~3!

where the scattering states have been normalized to un
coming flux. Here the indexm51, . . . ,N labels the wave-
guide and the transverse mode from which the field is
jected into the cavity. The time-delay matrixQ
52 iS†dS/dv is the derivative of the scattering matrixS
@23#. In order to calculate the scalar productrmm of the scat-
tering statecm and its time-reversedcm* , we perform a uni-
tary transformationU that diagonalizes the Wigner-Smit
time-delay matrixQ and rotates the scattering matrixS to the
unit matrix @24#,

S5UTU, Q5U†diag~t1 , . . . ,tN!U. ~4!

The positive numberst i , i 51, . . . ,N, are the ‘‘proper delay
times,’’ the eigenvalues of the Wigner-Smith time-delay m
trix. If seen as a basis change, the transformation corresp
ing to the unitary matrixU both diagonalizes the scatterin
matrix and absorbs the scattering phases into the definitio
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the scattering states. Note that the incoming modes are tr
formed according to the unitary transformationU, while the
outgoing modes transform according toU* , as required by
time-reversal symmetry.

In the transformed basis, the scattering matrix is diago
and all scattering phase shifts are zero. Hence, in the tr
formed basis, the scattering states are standing waves
which r51. Transforming back to the original basis, we fin

rmm5

(
j 51

N

U j m
2 t j

(
j 51

N

uU j mu2t j

. ~5!

Let us now consider the statistical distribution ofrmm for
a chaotic billiard. Following previous works on this subje
we consider the parameter regime in which the freque
average is taken over a windowDv!c/L!v, wherec is the
velocity of wave propagation andL the size of the billiard,
and in which the openings occupy only a small fraction
the billiard’s boundary. It is only in this regime that wav
functions have a universal distribution. We further limit ou
selves to ~quasi! two-dimensional billiards, in which the
electric field perpendicular to the billiard plane is identifie
with the wave functionc and the Poynting vector with the
current densityj}Im c*“c @25#. With these conditions, the
joint distribution of the scattering matrixS and the Wigner-
Smith time-delay matrixQ of a chaotic billiard is known
from random-matrix theory@26#. The distribution of the
proper time delayst i is @24,27#

P~t1 , . . . ,tN!5)
j 51

N

u~t j !t j
23N/221e2Ntav/2t j)

i , j
ut i2t j u,

~6!

wheretav is the average delay time andu(x)51 for x.0
and 0 otherwise, whereas the unitary matrixU is uniformly
distributed in the group of unitaryN3N matrices. Together
with Eq. ~5! this fixes the probability distributionP(rmm). A
direct consequence of Eqs.~5! and ~6! and the uniform dis-
tribution of U in the group of unitaryN3N matrices is that,
for a chaotic cavity,P(rmm) depends on the total number o
propagating modesN summed over all waveguides only;
does not depend on how many waveguides are attache
the cavity or on how the total number of modes are distr
uted over the different waveguides. For example, the pr
ability distribution P(rmm) for a cavity with two double-
mode waveguides is the same as that for a cavity attache
one single-mode waveguide and one triple-mode wavegu
or a cavity with four single-mode waveguides.

We were able to obtain simple expressions forP(rmm) in
the limiting casesN52 andN@1. ~The caseN51 is not
relevant since there are no traveling waves for a billiard w
one single-mode waveguide.! The distribution forN52 is
obtained parametrizing

U1m5~12T!1/2eif1, U2m5T1/2eif2,
5-2
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where 0<T<1 and 0<f1,2,2p. A uniform distribution of
the 232 unitary matrixU corresponds to a uniform distri
bution ofT in the interval 0<T<1 and uniform distributions
of the phasesf1 and f2 @26#. Integrating overT, f1 , f2 ,
t1, andt2, we then find

P~r!5
612~12uru2!21/2

3p~11~12uru2!1/2!3
, 0<uru,1. ~7!

Note that, althoughP(r) is defined as a function of the com
plex variabler, P(r) depends on the modulusuru only, as
required by time translation invariance. ForN.2 no such
simple result could be obtained. A numerical evaluation
the probability distribution of the phase rigidityuru2 is
shown in Fig. 1 for several values ofN. In the limit N@1,
P(r) approaches a Gaussian,

P~r!5
N

4p
e2Nuru2/4. ~8!

This is the same functional form as the phase-rigidity dis
bution for a quantum dot in a large uniform magnetic fie
@13,17,18#.

III. LONG-RANGE WAVE-FUNCTION CORRELATIONS

Following Refs.@4,14,21#, the joint distributions of inten-
sities and current densities away from the boundary of
cavity for one wave functioncm can be calculated from Ber
ry’s ansatz thatcm can be written as a random superpositi
of plane waves@7#,

cm~r !5(
k

am~k!eik•r. ~9!

In Eq. ~9!, all wave vectorsk have the same modulus, whil
the amplitudesam(k) are random complex numbers. For
closed cavity, amplitudes of time-reversed plane waves
related,am(k)5e2ifam(2k)* , wheref does not depend on
k. For an open cavity, no such strict relation exists. Howev
some degree of correlation betweenam(k) andam(2k) must

FIG. 1. Probability distribution of the phase rigidityuru2 for a
wave function in an open chaotic billiard, for different numbers
propagating modes connecting the billiard to the outside wo
From bottom to top at the left end of the figure, curves corresp
to N52, 3, 4, 6, 8, 10, 15, and 20. Inset: schematic drawing
billiard and waveguides.
04620
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persist in order to ensure the correct value of the scalar p
uct of cm andcm* , cf. Eq. ~2! @21#,

rmm5

(
k

am~k!an~2k!

(
k

uam~k!u2
. ~10!

~In the absence of correlations betweenam(k) andam(2k)
one would havermm50.! Taking the amplitudes correspond
ing to wavevectors pointing in different directions from ide
tical and independent distributions, we see that Eq.~10! im-
plies a relation between the second moments of
amplitude distribution,

^am~k!am~2k!&5rmm^uam~k!u2&. ~11!

This, together with the normalization condition(k^ua(k)u2&
51/A, whereA is the area of the billiard, the central lim
theorem, and the probability distributionP(rmm) we calcu-
lated in the preceding section provides sufficient informat
to determine the full distribution of the wave functionc.

As an example, we consider the joint distribution of t
normalized intensityI (r )5uc(r )u2A and the magnitude o
the normalized current density J5u j (r 8)u, j
5(A/k)Im c*“c at the positionsr and r 8, wherek5v/c.
If the statistical ensemble is generated by variation of
position r only, the single-wave-function distribution facto
izes into separate probability distributions forI and J that
each depends parametrically on the phase rigidityuru2

@14,21#,

Pr@ I ~r !,J~r 8!#5
8J

~12uru2!3/2
K0S 2JA2

A12uru2D I 0S I uru

12uru2
D

3expS 2
I

12uru2
D , ~12!

where I 0 and K0 are Bessel functions. When both positio
and frequency are varied to obtain the ensemble averag
further average overr is required,

P„I ~r !,J~r 8!…5E drP~r!Pr„I ~r !,J~r 8!…. ~13!

After such average,P(I ,J) no longer factorizes in genera
@The probability distributionP(I ,J) factorizes only ifP(r)
is a d function, which is the case for a closed billiard or
fully open billiard (N→`) only.# The degree of correlation
arising from the fluctuations ofr is measured through th
correlator

^I ~r !2J~r 8!2&c52
1

2
varuru2, ~14!

where ^AB&c5^AB&2^A&^B& denotes the connected ave
age. ~Since normalization implies that̂I (r )&51 for each
wave function, correlators involving the first power ofI fac-
torize.! For a billiard with two single-mode waveguides,

f
.
d
f
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varuru25
8

9
@148ln 22128~ ln 2!2241#'0.078,

cf. Eq. ~7!. Similarly, we find for the correlator of intensitie

^I ~r !2I ~r 8!2&c5varuru2, ~15!

plus additional terms that describe short-range correlatio

IV. DIFFERENT SCATTERING STATES

Thus far we have studied the distribution of a single sc
tering state in an open billiard. However, for a billiard that
coupled to the outside world via, in total,N propagating
modes, there areN orthogonal scattering states at each f
quency. In this section we address the joint probability d
tribution of wave functions corresponding to different~and
orthogonal! scattering states.

This question can be studied using the framework of R
@19#, which generalizes the above considerations to the p
lem of correlations between wave functions. As before,
starting point is Berry’s ansatz~9!, with a different set of
amplitudes am(k) for each scattering statecm , m
51, . . . ,N. We continue to take amplitudesam(k) from
identical and independent distributions for different dire
tions of k, whereas we allow for correlations between a
plitudes of time-reversed waves and between amplitude
different scattering states. Such correlations are neces
because the in-cavity parts of different scattering states
their time-reversed states are not orthogonal, see, e.g.,
~3!. ~Uncorrelated amplitudes for different scattering statem
and n would imply that wave functions in the cavity an
their time reversed are orthogonal if they correspond to
ferent scattering states.! Hence, the second moments of th
amplitudesam(k) should be chosen such that

nmn[

(
k

am~k!an~k!*

F(
k

uam~k!u2G1/2F(
k

uan~k!u2G1/2

5

E drcm~r !* cn~r !

F E dr ucm~r !u2E dr 8 ucn~r 8!u2G1/2, ~16!

rmn[

(
k

am~k!an~2k!

F(
k

uam~k!u2G1/2F(
k

uan~k!u2G1/2

5

E drcm~r !cn~r !

F E dr ucm~r !u2E dr 8ucn~r 8!u2G1/2, ~17!

where, as before, the integrals are taken over the billiard o
and we have chosen the normalization such thatnmm51.
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Equations~16! and ~17! then impose the following relation
for second moments of the amplitude distributions:

^am~k!an~k!* &5nmn^uam~k!u2&, ~18!

^am~k!an~2k!&5rmn^uam~k!u2&. ~19!

Repeating the same arguments as those leading to Eq~5!,
we find thatnmn andrmn can be expressed in terms of eige
vectors and eigenvalues of the time-delay matrix,

nmn5

(
j

U j m* U j nt j

S (
j

uU j mu2t j(
i

uUinu2t i D 1/2,

rmn5

(
j

U j mU j nt j

S (
j

uU j mu2t j(
i

uUinu2t i D 1/2. ~20!

The full distribution of the complex numbersnmn and rmn

then follows from the known distributions of theN3N uni-
tary matrix U and the proper time delayst j , j 51, . . . ,N,
see Sec. II. A simple expression is obtained in the limitN
@1, whennmn andrmn acquire a Gaussian distribution, wit
zero mean and with variance given by

^nmnnst&5
1

N
dmtdns if mÞn,

^rmnrts* &5
2

N
~dmtdns1dmsdnt!,

^nmnrst&5^rmnrts&50. ~21!

Short-range correlations between different scatter
modes arise from the fact thatrmn andnmn are nonzero for
mÞn. These correlations exist if statistics is taken as a fu
tion of position only and if the ensemble also involves
frequency average. For example, for the second momen
the intensity and current density distributions, we find fro
Eq. ~9!

^I m~r !I n~r 8!&c5~ unmnu21urmnu2!J0~kur2r 8u!2,

^ j m,a~r ! j n,b~r 8!&5
1

4
dab~ unmnu21urmnu2!J0~kur2r 8u!2,

~22!

wherea,b5x,y. For the caseN52 of a billiard with two
single-mode waveguides, the relevant expectation va
^ur12u2& and ^un12u2& can be obtained from Eq.~20!. Here,
one parametrizes the unitary matrixU as

U115~12T!1/2eif1,

U125T1/2eif3,
5-4
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U215T1/2eif2,

U2252~12T!1/2eif21 if32 if1,

where 0<T<1 and 0<f1,2,3,2p are uniformly distributed
@26#. Upon integration overT, f1 , f2 , f3 , t1, andt2 one
finds

^ur12u2&5
1

15
~64 ln 2237!'0.49,

^un12u2&5
1

15
~26232 ln 2!'0.25.

Long-range correlations between wave functions of diff
ent scattering states arise from the fluctuations of the ‘‘sc
products’’ nmn and rmn . They exist only if the ensemble
involves a frequency average. The lowest moment with lo
range correlations is

^I m~r !2I n~r 8!2&c522^I m~r !2Jn~r 8!2&c5^urmmu2urnnu2&c ,
~23!

where^urmmu2urnnu2&c52^urmmu2&^urnnu2&. With a calcula-
tion similar to that of the short-range correlations one fin
for N52

^ur11u2ur22u2&c5
8

315
@5792 ln 224480~ ln 2!221861#

'0.032.

V. CONCLUSION

In conclusion, we have calculated the statistical distrib
tion of wave functions in an open chaotic billiard. For a
open billiard, the wave-function distribution that is obtain
by an average over both frequency and position is differ
from the one obtained by an average over position only
the latter case, which was considered in previous theore
@4,20,21# and experimental@5,6# works, the wave-function
et

nt

E.
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distribution contains the wave function’s phase rigidity as
fit parameter. For the full ensemble average considered
~both position and frequency are varied!, no fit parameters
are needed; the phase rigidity is a random quantity wit
known probability distribution.

The fluctuations of the phase rigidities are responsible
long-range correlations between intensities and current d
sities in case of the full ensemble average. Long-range wa
function correlations were predicted previously for the re
to-complex crossover for electronic wave functions in
weak magnetic field@18#. Experimental verification of these
effects would address aspects of random wave functions
go beyond a description in terms of a random superposi
of plane waves. However, for the magnetic field-driv
crossover in the electronic context as well as for the op
billiards considered here, the relative magnitude of the lo
range wave-function correlations is small, of the order of
percent or less@18,19#. Presently, the accuracy of solid-sta
experiments of wave functions in semiconductor quant
dots is insufficient to resolve such an effect@28#. The nu-
merical smallness of the effect of phase rigidity fluctuatio
could also explain why intensity distributions in closed ca
ties with broken time-reversal symmetry measured by Ch
et al. could not distinguish between theories with and wit
out phase-rigidity fluctuations@10#. Our finding that the
long-range correlations also exist in open microwave b
liards, together with the availability of very precise measu
ments of wave-function distributions for this system@5,6#,
opens a new avenue for experimental observation of lo
range wave-function correlations in the crossover ensem
and makes possible a fit-parameter-free comparison of
periment and theory.
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